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NONCLASSICAL CONTROL PROBLEMS AND STACKELBER G GAMES

U
r C. P. Papavassilopoulos and J. B. Cruz, Jr.
I.

Abstract: A nonclassical control problem, where the control depends on

state and time , and its partial derivative with respect to the State appears

1 •~~ in the state equation and in the cost function is analyzed . Stackelberg

I (. dynamic games which lead to such nonclass ical control problems are cons idered

-~ . and studied .

Key Words : Stacke lberg games , nonclassical optimal control , variational

methods .
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4 MAIN EREATA

• P. 16 line l4

1 

x 1(x 1—x 1( t ) )

4 u(x ,t) e .~~(t) + [ 1(t)-~ 1(t)~~( t ) J [ x1- 1(t )]

• P. 26, 27, 33 Where m , read

P. 27, relation 75

Rj ~
jI
~ 

Y l~~~• * V m •y >O , i 1 ,...,m1

P. 29 line 11

Instead of~ “(h(x(t),t)) “ read “(x(t),t)”

4.-

I

I

ii

- 
I

t

~~~~~~~~~- - - - • • ~~~~ —~~~•-— ~~~~~~~~~~~~~~ 
• :::::. _--~~~~~ ~~~~~~~~~~~~~~~~~ • - ~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • -~~ •- 

- -~—



‘~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 
-— _______

I

— I

Introduct ion

Hierarchical and large scale systems have received considerable

I. attention during the last few years; ftrstly because of thc~ r importance in

engineer ing, economics and other areas , and secondly because of the increased

capability of computer facilities (131 ,1114]. An important charac ter istic of

many large scale sys tems is the presence of many decision makers with  d i f f e ren t

and usually conflicting goals. The existence of marty dec is ion makers who

interact through the system and have different goals may be an inherent

property of the system under consideration (e.x., a market situation), or

may be simply the result of modeling the system as such (e.x., a large

system decomposed to subsystems for calculation purposes). Differentia l

- 
games are useful in modeling and study ing dynamic sys tems where more than

• one decision maker is involved . Most of the questions posed in the area of

the class ical control problem may be cons idered in a game situation, but

their resolution is generally more difficult. In addition , many questions

can be posed in a game framework , which are meaningless or trivial in a

classical control problem framework . The superior conceptual wealth of game

over control problems , which makes them potentially much more applicab le ,

• counterbalances the additional difficulties encountered in their solution .

A particular class of games are the so-called Stackelberg

differential games (l]-(8]. Stack.lberg games provide a natural formalism

- for describing systems which operate on many different levels with a corre-

sponding hierarchy of decisions . Th. mathematical definition of a general

two-level Stackelberg game is as follows . Let U, V be two se ts and 
~~

two rea l. valued func tions

L.

Ii
________________________________ ________________ -- ~~~~~~~~ • - - -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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L
U~< V — R, ~ 

a 1, 2. (1)

4
We consider the set valued mapping T

T
T U — V, u I-’ TuCV (2)

defined by

Tu (v~v arg inf(J2(u,~ ); VEV ]’j. (3)

Clearly Tu 0 if the inf in definition (3) is not achieved. We also consider

the minimization problem N
inf J1(u,v) (4)t .

subject to: UEU , vETu ,

where we use the usual convention J1(u ,v) — +~~ if VETu — 0.

Definition: A pair (u*,v*)EUXV is called a Stackelberg equilibrü~n pair if

* *• (u ,v ) solves (4).

• The sets U and V are called the leader’s and follower’s strategy spaces
- respectively. The game situation described by the mathematical formulation

• 
- 

above is as follows. The follower tries to minimize his cost function J
2,

for a given choice of UEU by the ].eader. The leader knowing the follower’s

rationale, wishes to announce a u such that the follower’s reaction v to

* * *this given u will result to the minimum possible J1(u ,v ). The general N-

level Stackelberg game i~ defined analogously. Stackelberg differential

games were first introduced and studied in the engineering literature in 112]

- 
and further studied in ~3] -118]. They are mathematically formalized as

follows
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i t t )  — f~ x & t ) , t~( t ) ,~~~t ) , t ) ,  x ( t )  ~~x

• 
~f 

(5)

J1 (u ,v) — gj  (x ( t f ) ) t f ) + L~ (x (t )  ,u(t~ ~~~~~~ , t ) dt  , i —

t
0

where f, 
~~ 

L~ are appropriatel y defined functions . Also , uE U , v e~V , where

U, V are appropriately defined function spaces and ~~(t ) , ~~( t )  are the va lues

of u and v respectively at time t , i.e ., ~~( t )  • ~~~ ~~( t )  v
1~~

. The type

of s trategy spaces l.~ and V which were con sidered and treated success fu l ly in

the previous literature wh~ t~e t~ e spaces of piecewise continuous

functions of time. In this case, the problem ~f deriving necessary cond i-

t ions for the Stacke lberg d i f f e r e n t i al ,  game wi th  f ix ed time interva l and

ini t ia l condi t ion x , f a l l s  w i t h i n  the area of c lassical  con t ro l .  Thus ,

variational techniques can be used in a straightforward manner. The case

where the strategy spaces are spaces of functions whose values at instant t

depend on the current state x(t) and time t , i. e. , ~~(t) u
k 

a

~ (t )  — v — v ( x ( t ) , t ) ,  was not treated . This case results in a nonc lassical

I .control problem because ~~ appears in the fo l lower  s necessary cond~.t~,ons.

Since the follower ’s necessary conditions are seen as state differential

equations by the leader , the presence of in them makes the leader face a

nonc lass ’cal control problem.

In the present paper , the nonc lassical control problem arising

from the consideration of the above strategy spaces is embedded in a more

general class of nonc lassical contro l problems , see (6) ,  (
~~~

. The

characteristics of this  genera l c lass of problems are the fo l lowing :

(i) each of the components u1’, of the control rn-vector u , depend s on the

current time t and on a given function of the current state and time , i . e .

~ L
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U
k 

— u ( h ~~ x~ t ) , t ) , t ) ;  t i i )  the s t a t e  equation and the cost f u n ct i on a l

depend on the f i r s t  order p ar t i a l  d e r i v a t i v e  of u w i t h  r e spect  to  the s tat e

x .  The vector  valued functions may represen t  ou tpu t s  or measurements

ava i lable  to the i -th  “su b c ont r o l l er , ” in a decentralized control setting .

The only restriction to  be imposed on h~ is to be twice cor&tinuouslv

d i f f e r e n t i a b l e  w i t h  re spect  to x .  This a l lows  for a quite large c lass of

which can rno~el output  feedback or open loop c o n t r o l  laws . It can a i s o

mode l mixed cases of open loop and ou tpu t  feedback c o n t r o l  laws where dur ing

only ce r ta in  in terva ls  of t ime an output is ava ilable . The appearance of

the partia l derivative of u wi th  respect  to x p r oh i b i t s  the r e s t r i c t i o n  of

the admissible  controls  to those w h i c h  are func t ions  of time only . It will

become c lear that the extension of our r e sult s  to the case where hi gher order

partia l derivatives of u with respect to  x , up to order N. appear is straight-

forward . This case is of in te res t  In h i e r a r ch i cal  sy s tems since i t  arises ,

for example . in an N-level Stackelberg game wh er e  the p layers  use con t ro l

values dependent on the current  s ta te  and time . Although t~-t~ bu lk  of  the

anal ysis  provided in th i s  paper concerns continuous t ime problems , the

correspond ing discrete time results can be derived in a very simi lar manner.

The structure of the present paper is as follows : In Section 1. a

nonc lassical control problem centra l to the whole development is defined and

studied . In Section 2. a two-level Stackelberg differenti al game is treated

for a f ixed tim. interva l t t *t f ) and initial cond i t ion  x(t~~ — x .  The

leader ’s and follower ’s strategies are functions of the current state and

• time , and the results of Section 1 are used for deriving necessary conditions

4 ~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-: 
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f or  :~~~s game. e r i ~~ ~nterpretat~ ons ‘f t~-~e s~~:~ ~~~ ~~~ ; iven -

Sec: tcn  3 , a L~ near ~uadra : .c ~t ac~~e 5 e r g game ~s s o ’ ~’ed as a

a~ o c ar~.ori of  the :~ecr ’ of Sec:~ on 2. Fi~~~~ ’-’. ~e have ~ c C.

sec:~ on .

Notation and Abbreviations

• R
n
: n-dimensional rea l ~uclidean space ;~i:h the Luclidean metric

denotes the ~uclidean metr ic  fo r  vec tors  and the r~onn for matr ~ces

denotes t ransposit ion for  vectors  and matr ices

For a function f : Rn 
— R.~ we say that f C~ if has continuous

nmixed par t ta~ derivatives of o rde r ~~~. For f : — R, ~ f ~s cons idered as

1 column vec tor  and f denotes the ~-iessian of f .  For f : R
n 

— R
m , ~f is

considered as n-~ m matrix ~Jacob ian’I . For f : R~ \ R~ — ~
m
, where x-~

yE R~ , f (x ,y)~ ~
m
, we denote by or f or ~~E the Jacob~ an matrix of the ~ar:~a

derivatives of f with respec t tO x and is considered as n ~ m m at rix.

w .r .  to:  with respect to

w.l.o.g. : without ~.oss of generality

n.b .d . : neighborhood.

• 
*t .

1. A Nonclassical Problem

Cons ider the dynamic sys tem descr~~ ed b y

t ~~:) — f ( t ) , u ( h x~ :~~, t \ , t~~, u h ¼ x L t \ , :~~, t \  

, t~~ ,:~ u~~ h ( x ~ t~ , t~~ ,:‘
~ , t

’
~

x~ : )  — x
0

, rE

—C .. L~~-~~~-~~~~~- —~~~~. _• • ~~~_ • - ~~~ -- .
•
~~~~~_~~ —~~~ __-~_ ~~---  ~~-~~- - -~-~ • - - -— - - — — • . ~~~

- -  
• ~
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Li

j

1 and the functiona l

J t
f

J ( u )  a g~x (tf)~~
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

n9in+mri+l n n+~i +~ni1 n • i ,, n+l ~iI where the func tions  t :R  R , L :R  R , n R ~ R

i 1  rn , g : RT1

~~ R are continuous in a ll  arguments and in C w i t h  respect to

I I i n+l . • 2
th e x , u , u .  The functions h :R R , are continuous , and :rt . w .r. to x

The time interval (t~~t f
) is considered fixed w . l . o . g .  ~see ~~~~~ We want to

find a function u where
U

U

~ 
q~u : R  X . t 0~~t f 

R , i l ,...,m

u~~(h
t (x , t ) , t )  ex i s t s  and u~~ h i (x , t ) , t ) ,  U L (h ~~~~~~~ are cont inuous  ~n x

and piecewise continuous in t , for X E R , tE
:
r t

f
’
~ ~~ ~ ~~ as t O

mi nimize .3(u) .  We denote by U the Set of a l l  such u ’ s .  Therefore  t~ie

problem under inves t iga t ion  is

minimize 3(u)
I

subject  to u E U  and ~ô ) .
j

We w i l l  use the no ta t ion

~ 1 l~
— , ~txn matrix , L — , ~xl  vector

I
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1. ‘3

— ~~~~~~ , cxc matrix , i — L , .. .
L.

(9)

nXn vector , i a l ,...,tn
3(u5

• i 
— 

~u
i (y i ,t )  i 

— ( 1~ i ~ )‘ ~ R
’

h
L 

~~~~~~~~~~~~~~~~ )

I

, i 1 , . . . , tn , j l ,...,q.
i qj

1. i i
u j —

— 

~ 
, ~~~ vector i I,...

• ~y y h (x ,t)

tfl
u — u • U •1 , nxrn matrix.

This problem is posad for a f~ ced time interva l :t0~ t
f 

and initia l condition

— x0. Therefore the solution tf~, if it ex is ts , will in ge nera l de pend

on t , tf~ x0, 
but we do not show this dependence explicitly .

It should be pointed out that the arguments used in Classical

Control Theory for showing that for the fixed initial point case , it is

irrelevant for the optimal trajectory and cost whether the control value at

-U rime t is composed by using x(t) and t or only t , do not apply here . If

u~~ — u(t), ~~~~~~~~~~ then U
,c

0 and this changes the structure of problem

(8). Consideration of variations of u is also needed and this was where the

previous researchers stopped , see L~
] . This provlem is successfully treated here , 

- -•

• by proving an extension (Le~~a 1.1) of the so-called “fundamental 1.en~ a ” in

I the Calculus of Variations (see C12)).

The following theorem provides necessary condItions for a function

to be a solution to the proble m (8) in a lcca . sense; (we assume that J

U is properly topologized). It is assumed in this theorem that the optimum u~

has strong differentIability properties , an assumption which will be relaxed

I.! later , in Theorem 1.2. The proof of this theorem i~ based on the following le~m~a. 

4.



Lemma 1.1: Let M : Et0 tf~ 
..~ m

, N~ : t
0 I t f_ R I i 1 ,... ,m , y : .t0 tf_ R ,

- 
be continuous functions , such that

• 1
m

~ M’(t)~~(y( t),t)dt + Z N ’( t)~~ (y( t), r)d t a

t i—i t 
y

~
i’ I 

0

-

~~ for every continuous function p :Rn X t Q ,tf~~
.Rn, where 

~
‘.(ç

~ , •
~~~~

• , ç
~m

)

t

, and

z~ is in C
1 
w.r. to y. Then M, N1 ,.. ~~

Nm are identica l ly zero on

• Proof of Lemma 1.1: The choice p . = (U 0) ’ 
~p

1• : :~~ l~~f — R , ~~

continuous in t, i 1 ,...,m, yields M30 on t
0~ tf~ . Since M A O , the

cho ice — (O ,.•.,y ’V ,O ,. ..,O) ’ , cpi a y ’V , where V — (* , .  • . ,
-
~‘ ) ‘ ,

tf 
1 n

V continuous in t , results in~ N (t)’V (t)dt O , for every
to

such V , and thus N~~~O on :t0l tf 
is proven in the same way as M~~O was

- 
proven.

The conclusion of the above lemma holds even if the re stric tion
-

~~~ 

ku k~~ \~
~p (x, t) — y1 

... y~ .t is imposed , where k1~ 1. .. are nonnegative

I 
- 

integers , since the polynomials are dense in the space of measurable functions

on [t
0)

tf...

Theorem 1.1: Let u*EU be a solution of (8) which gives rise to a trajectory

a ((x*(t),t)ItE tQ ,tf~), such that u
t
~ are t h C1 

w.r.co x in a n.b.d. of

[(h
1 (x*(t))t))t),tE [t0)tf

]). Then there exists a function p : ~~,~~f
_.Rn such that

1. 
m

— L + f p  +~~ ~ 1
u~V h ~ (Lj +f ip) (10)

L + f
~

p a 0 (11)

~
7h

~~
(Li +f jp)* 0 , i — 1 , . . . ,rn ( 1 2 )

• 
~g(x (tf))

P(tf) 
— (L3~

1.
I ~~~~~~~~~~~ 

--- ~~~— — - - ~~~~~~~~~~~~~~~~~~~~~~~~ : - ~~~~.-~~ - - ~~~~~ ~~~~~~~~~~~~~~~~ - . .  ~~~~
• 

.
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ho ld for ~ E:~0)~ f:) 
where all the partial derivatives are evaluated at

x*(t), u
i*(h i (x*(t),t),t), u~*(h i (x*(t) , t),t),t.

Proof of Theorem 1.1: Let g ao w.l.o.g. (see 1 10)). Consider a function

p E u , ~~— (CP
I
,...,P

m
) which has the same continuity and differentiabilit y

proper ties as u~ . Such a ~o will be called admissible . Using the known

theorems on the dependence of solutions of differential equations on

* 

parameter s, we conclude that for t E R , e sufficiently small , u*+ cc* gives

rise to a trajectory t (x (€ ,t),t )tt~~~t0)tf
]i , x (0 ,t) — x*(t) , and that

• x(c ,t) is in C
1 
w.r. to C .  Direct calculation yields

• d 
(~~x(€ . t ) )  

- 
~~x + (ux+e

~~
)f +

i~ i 
(u
~~
+€
~~~

)f 1 
~ ‘ ~x (c. 

r)

* +f ’
~
p +

i
E
i
f .

V h
~

cp
~

i ~x~c .,t)1 — 0. (14)

We set

• z(t) - 
3x (:~ t)1 (15)

m q1 1 ~A (t) f + u f + Z  Z
1
u~V h ~ f~~ (16)

• 81
(t ) — f~ (17)

B~ (t) — f 1~7 h t
, i l ,...,m (18)

where A , B1, B~ are evaluated at t , x~ , u~ , u’~ and , thus , for C Q , (14) can

be written as

• I I — A z + B lP +
i~ 1

B
~~~

ji z(t0) —0. (19)

For f ixed we cons ider

a

It

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~.-. • •~~ . • •~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -.~~~~ .~~~
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Since ~ (c) is in C1 w,r. to € and u* is a local optimum , it must hold

dJ(c)

I d€ £ 0

Direct calculation yields

1. t
dJ(c) 

— + (u +cco )L +Z(u~~+c~P
t )L~~

’ 3x (~~t)

E L ’
~ h~CP~ )dt (20)

U i—i X

1. Setting

I ~ (t )  — L + u L + Z  Zu~V h ~L1 
(2 1)

• 
~~~
1

(t )  — L
~ 

(22)

- 
. ~X~ (t) — Ljv h~ , i 1 ,... ,m. (23)

with t’, ~~~~, A
2~ 

evaluated at x~ , u~ , u , we conclude from (20)-(23) that

— 0 .  (24)

Therefore (24) must hold for every admissible ~~~~. Let ~~ (t , 1) be the transition

matrix of A(t). Let also ~ (t) denote the vector (cp1 (h1 (x*(t),t),t),...,

1. CPm (hm (X*(t),~ ),~~))
J and ~~~(t )  the vector 

0 t ) ,t),t) 
. Then from

(19) we obtain

z(t)  - t ,T B
1(~~~(T) +1

Z
1
B~(~)~~ (T))dr (25)

t E C t 0)tf]

and substitut ing in (24) we obtain

I
• . . ~~~~ •.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~•_ - •
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t
f m

i (r(t) ’~~ (t )EB 1(~~~(~) + 
~~~~~~~~~~~~~~~~ 

+~~(r)~~(t)

+ ~~ A~(t)~~(t) )dt — 0. (26)
i—u -

• Let X (a ,b] denote the indicator function of (a b]~~~[t0~
t
f1. We can inter-

change the order of integration in (26) since the integrated quantities are

bounded on (t ~tf1 x [t )tfl (Fubini ’s Theorem). Using the fact X~c) —
o 

(t ,bJ
X(b) we have successive ly 0

• (c)t
f
]
t t

+

x(t) d~dt ~ 
(J’ ~~~~~~~~~~~~~~~~~~ +

(rt
f
] ‘ to 

1•

in t
f

t
f

* + E ~ [j r(t)4(t,T)dt]3~er)~~(T)dT . (27)
i—I t ¶

0

By introducing

t
f

L p ’(r) — ‘ r(t)~(t,~ )d~ (28)
ft

(26) can be wr Itten as

t t
f In

+ 
i~ l ~:

1P *( 2 (T) + A~ (T)).

— 0. (29)

Applying Lenuna 1.1 to (29), we obtain

p ’Cr)B1(’r
) +~~~(‘r ) a 0, on [ t

0)tf
) ~30) 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • • 
- 

-
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L

a 0 on :t0 I t f:~ (31)

Using (17), (18) and (2), (23) in (30), (31) we have equivalently (11) and

(12). Differentiation of (‘8) and use of (16) and (21) give the equivalent

to (28)
.~~~

q1
— L~ 

~~~~ ial 
Zu ~~~~h~ (L~+f~P)

P(tf) 
— 0.

t. The assumption gaO , is removed in the known way , resulting in (13).

We give cow a different derivation of the results of Theorem 1.1.,

under weakar assumptions , which provides an interpretatIon for

them and at the same time an extens ion of the region of their validity . Let

Uk 
— C~i~ : Ct0~ tf~ 

— R
k, ~ piecewise continuous 3 . (32)

Consider the problem -

L
minimize ~~~~~~~~~~~~~~~~ — g(x(tf

) )+ 1 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0

subject to ~c — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x(t
0

) x
0 , t E 1 t l tf

]

~~~~E~~~~~~~
I ~~~~~~~ i ].,...,m .

Clearly , if J~, J~ are the thfima of (33) and (8) respectively , it will be

~~~~~~ Also , if 
~~ ~~~~~~~~~~~~~~~~~~~ 

solve (33) and give rise to x ( t),

then an u — (u1, . .. ,uIn)~ EU with

I

I.
~~~~~ .

••• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ •: ~~~~~~~~~~~~~ • .- - •~~~~~~ .
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~

(t), u
t (h~ (x(t),t),r) —~~ h

t (x( t),t)~ 1(t)* x

I 1,...,m (34)

results in J2 (u) a J(U ,u1, . • • ~ ,U )  and gives rise to the same x ( t ) .  However,

such uEU doss exist. For example we set

u
t (h~ (x ,t),t) — a~~(t) h

t (x ,t) + b
1(t) (35)

where

— 
~~~~~~(t )  (36 )

b~ (t) — 
~
1(t) - a~(t)h

1(x(t),t) (37)

I — 1,.. .,m

This u satisfies (34). Thus, problems (33) and (8) are actually equivalent ,

in the sense that for each given (x01 t0) they have the same optimal

trajectories and costs and their optimal controls are related by (34).

The conditions of Theorem 1.1 are cow directly verified to be the

necessary conditions for problem (33), where one should use ~ and in

place of u and u
1
jrespectively. ~1ore importantly, the conditions of Theorem

7

*1.1 hold if one considers simply u Eu , without assuming that u~~ is in C~
w.r . to x ~~ a n.b.d. of f(h

1(x*(e),e),t),t E ( c ,t;fl. This weakens the

strong differentlabi .ity property of u~ assumed in Theorem 1.].. ~~

relative independenc e of u , u~~, was exploited in proving Theorem .. ‘ ,

when the special form of the perturbation p c v, t) ,  y ’~~( t)  (see proo f f

Lan~ a 1.1), sufficed to conclude (ii) and ( u) .  This independenc, of u and
• 

was taken a pr ior i  into consideration , when problem (33) was formula ted.

Clearly, even i f  ~iIgher order partial derivatives u w . r .  to

_ _
-

• 
~~~~ —~~-
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x appear in f and L, or if u,u~1 are restricted to take values within

certain closed sets, the equivalence of the corresponding problems (8)

and (33) holds again (with appropriate modifications of the definitions

of U Uk f and L). We formalize the discussion above in the following

theorem.

theorem 1.2: Let U*EU be a solution to the problem

t
f

minimize J(u) — g(x(t
f
)) + L(x ,u,u ,..•,u~ ,t)dt (38)

subject to: ~ f(x ,u u~ ,. . .,u~ ,t), x(t
0) 

— x , tE[t~~tf
]

UEV, (ul (ht (x(t),t) ,t),...,uIn(hIn
(x(t),t),u1

1
(h1(x (t),t),t)I ,...,

Umm (hm (X(t),t),t)~)Ev (39)
y

m+ nmwhere V— R is closed . Then there exists
0~~

p: ft ~tf
] R1

~ such that
0 

~• — 
x~~~ j~~ j~ l~j x

hj~~ i+f iP) (40)

L(x*(t), ul*(hI(x*( C ) , t),t),..., Um (hm(X*(~),~ ),~ ), ul*(hl (x*(t),t),t),

,... , Um~ (hm (x*(t),t),t),t) +

+ f ’ (x*(t), u h
1 (x*(t~ ,t),t),..., u

m*(hm (x*(t),t),t), ul*(hl (x*(t),t),t),

Um*(hm(x*(t),t),t): p (t) <
X 

(41)
< L(x*(t), q~ ,...,q , ~~h

l (x*~t),t)q11 . . .,V h In(x*(t),t)q~,t)

: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I • ~~~~
— - .

••~~~~~~~~~ •~~• • -  -~-- V •- __V~•_ V~~_~_  
- • 

V V —— V -
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~g(x*(tf
))

P(tf) 
— (42)

for tE (t , t ] .o f
It is remarkable that the established equivalence of the problems

(8) and (33) refers to the optimal trajec tor ies , costs and control values.

It does not refer to any other properties , such as sensitivity, for example.

It is thus possible , that different realizations of ut (ht (x ,t),t) other

than (35) may enjoy sensitivity or other advantages . The following pro-

position provides information for tackling such problems.

Proposition 1.1.

(i) If u and v are elements of U, both satisfy ing (34), so does

\u+(l-X)u , ~~ER.

(ii) Let In”l , h1(x,t) — x
1 

and ~~~~ be scalarvalue functions of

t ,t€ (t0,tfl. Then the function

u(x,t) — e ~1
(t) + (~ (t)-i’1(t)~1(t)1 [x

1~~j(
t))

satisf ies u(~ (t),t) — ~i~(t), u(~(t),t) —

(iii) Let ~~, ~i , i1,~ be as in (ii). Assume that the scalar valued

functions u(x ,t), v(x ,t) satisfy u(~ (t) ,t) — v(~ (t),t) a

fl(t) and u (~ (t),t) — V
~~

(r (t), t )  111( t ) .  Then so do the

functions ~~. ~~~~ju +v2 
, assuming that u and v are properly

behaved .

The proof of this proposition is a matter of straightforward verification .

The assumption in parts (ii) and (iii) for scalar valued quantities

actually induces no loss of conceptual generality , since it can be abandoned

at the expense of increased complexity of the corresponding expressions

_ _ _  V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V • •  ~~ L :~~~~~~~~ V~~~~_ -V

~~~_V
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of course.

The rionuniqueness of the solution u to problem (3) is obvious

in the light of (34) and Proposition 1.1. Nonetheless, this nonuniqueness

is a nonuniqueness in the representation of as a function of hi and t,

while 
~~~ 

utjI~ 
are the same for all these representations . The non- H

uniqueness of uI
~~
,u
~~

I
t, 

if any, can be characterized in terms of the
7

possible nonuniqueness of the a~ (t)1 b~ (t) (see (35)), where one , w.l.o.g,

restricts u~ to affin e in h1 strategies.

One very basic difference between problems (8) and (33) is the

following . It is clear that the principle of optimality holds for both of

these problems , in the sense that the last piece of each optima l trajectory

is optimal. The existence of a closed loop control law

• 
. • Zi~ (x ,t) which results in an optimal solution to problem (33) for every initial

ri-f-I .point (x0,t0) in a subset of R. is guaranteed under certain assumptions , see

~ll] . A corresponding statement does not hold for problem (3), i.e. in general

there do not exist functions u~ of h
L (x ,t) and t such that ~~ (u

1,.. .,u~) is

• an optimal solution to problem (8) for every Initial point (x
0,

t0) in a subset

of ~~~~ This can be easily seen to hold S7 the following argument. Let

such u exist. Then, 
V

(ut (h1(x ,t),t),. ..,uIn(hIn(x ,t),t),ul1 (hl (x ,t),t)
I
, .. .,u~m (hm (x ,t),t)

v
)

I

is a closed loop control La: for problem (33). This implies that there must

exist a solut:ori (u ,ui,...,u
~
) with u (U ,...,u ) of the partial d~ ffererit .a.

equation of Dynamic Progransuing associated with problem (33) which satisfies
I I 

_ _ _ _ _ _  
i

‘~ (x,t )  — u (h (x ,t), t )  and 7xh (x ,t )u 1 (x ,t), i 1  m, which

I.
Ii

— -  
~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~ •~~_ . 

- - _ :~~~~~~~~~r : ~~~~~~~~~ 
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is not in general. true. This difference between problems (8) arid (33) emphasizes

the fact that their equivalence ho lds in a restricted fashion , i.e. for each

InitiaL point considered independently and co t in a global fash ion , like a

closed loop control law treats the initial points.

Two final remarks before entering the next section are

pertinent here. First , that the established equivalence of the problems

(8) and (33) reduces all questions of existence , uniqueness V

and of sufficiency conditions for problem (8) to the corresponding ones

for (33). Second , Theorem 1.2 still holds if instead of the initial condi-

tion x(t
0) 

— x0, 
it is given : x (t3) x

0 and x (t
f) ~~~ where x — (x ,x~ ) ‘ .

In this case, (42) is modified to

~g(x~ (t
f
)) ~h(x3(t0))

p (t
f) — and p (t ) — 3 (43)

~ ( x )  ~ (x )

where the more general cost functional

t
f

J — g(x~(t
f))+ h(x (t0))+

’ L(x ,u,t)dt (44)
t

is considered (see (10]).

2. A Stackalberg Came

In this section we introduce a two-level Stacketherg game and 
V

show how it leads us to the consideratIon of a nonclassical control

problem. This tionclassical control problem falls into the general class

considered in Section 1. Using the results of Section 1, we analyze

the Stackelberg game of the present section.

- •~~~~~~ V• -V ______V__j
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- Let

• U — tutu : ~~ ~(t Q)tf
i :i, ~ (x ,t~E~~~

1 for and t~~(t ,t2,

u (x ,t) exists and u(x,t ) , u (x ,t ’~ are continuous in ~c andx x (~ 5)

- piecewise continuous in t 3

[ v [v lv :  (t~~tf] — R~~, v is piecewise continuous in t )  . (46~

L Consider the dynamic system

I * ( t)  — f(x(t), ~(t), ~ (t~ ,t’, x( t ) — x , tE ( c  .t:~ 
(47)

1.. 0 0 0

and the functionals
(V. tf

J1(u,v) — g(x (t
f)) + L(x(t), ~~~t ) ,  ~ (t),t)de

L
t

[1 J~ (u,v) — h(x(t
f
)) +

‘ 

~I(x(t), ~~( t ) ,  ~ (t ) , t~ (49)

where tiE ‘~‘ , yE V , ~ is the state of the system , assu~~d to be a cont~riuous

U 
function of t , x: [~~~ t

f
] R~ , and the functions f: Rri S(~~~~~1 ~ :2

( e 0~t f ] — g,h : — R , t ,x a a - x V t
0

~~~~t
f
] 

—

El ar. in C
t 
w.r. to the x,u,v arguments and contInuous in t. The ti and v are

L
‘

V

_____ ______

‘V

V V

• - V
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called strategies and are chosen from U and V which are called the strategy

spaces , by the two players, the leader and the follower respectively. With

the given def ini tions , for each choice of u and v, the behavior of the dynamic

system is unambiguously determined , assuming of course , that for the selected

pair (u,v) the solution of the differential equation (47) exists over [t0~tfi

Let us assume that such a Stackelberg equilibrium pair (u*,v
*)

exists. For fixed uE U, Tu is determined by the tninimization problem

minimize J
2

(u ,v)

subjec t to: V EV (50)

x f(x, u(x,t),v,t), x(t ) x , tE ( t
0 l t

f
]

and thus, appl ying the Minimum Principle we conc lude that for  v EV to be in

I. Tu, there must exist a function p : (t0~ tf
] — such that

x — f (x ,u,v,t) (51—a)

M~~+ 
~~~ 

a 0 (51-b)

[ -

~~ 

— 

~x + u M  + (f +u f ) p  (51-c)

~h(x ( t
f

) )
x (t0

) — x~, P(t
f
) 

~x (Sl-d)

~1e further assume that U is properly topologized. Conditions (3 1)  define a

V sat valued mapping T’ : U — V. By using the nature of the defined U and V

and the fact that (Si) are necessary but riot sufficient conditions it is

easily proven that

(i) ruc T ’ tL

I . 
____________ ____________

- • - V 
V_V— V- ~V



T

21

(ii) j
2

(u ,~~ )~~ J
2 c:~~

t) Y :v ’ ET ’u, vETu,

(iii) T’u flTu ~ [v ) ~ 0.
Notice that J

2
(u,v) takes one value for given u and any vET’..i, while

v’ ET ’u does not necessarily do so. We assume now the following.

~issumption (A)

1. .1
1

(u ,v ’) ~ J1(u ,v) for v ’ET 1 u, vETu , uEU (52)

* *where U
N 

is a n.b.d. of u in U.

For (A) to hold it suff ices for examp le : T T ’ on ~~~ We conclude

that if (A) holds , then u~ is a local minimum of the problem

minimize J
1
(u,v)

subject to: uEU , vET ’u

or equivalently

minimize J1(u,
v)

V subject to: uE U , vEV 
(53)

— f (x ,u,v,t) (53—a)

-p + u M  + 
x x ~u~~ 

(53-b)

M
~~
+ f 11p — 0  (53-c) V

[ ~h(x(t
• x(t )  — x0

, P ( t
f
) ~~f . (53—d)

The problem (53) is a nonclassical control problem of the type considered in the

• - previous section , since the partial derivative of the control u w.r. to x

appears itt the constraint s of (53) which play the role of the system ciitferen-

tial equations and state control constraints, with new state (x’ ,p’).

I.See Appendix A.

- _-- 
- —~~-, - --V ~~~~~~ —- -~~-_~~- -
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Not ice that the Leader uses only x (t) and t in evaluatin g u ( x ( t ) , t~ and not

the whole at  • : :  (.~c ’ ,p ’)’ ; i.e. , the value of u at t ine t La composed Lri a

partia l feedback form with respect to the state (x’ ,p ’) ’ ; (recall the output

feedback in contrast ~o the state feedback contro l laws). In this case , the

for the leader (u), are

— 1 0 — c i—l ,...,mrixti - p 1
•j

arid the h
is s for the followe r (v) are ident ically zero. Different h i ’ s nay

be used to model different I n f or m a t i on  structures in term s of ~c ( t ) , arid t

ava ilable to the lea der and foLlower at t ime t .  If  one were concerned with

a Stackelberg game composed of N 
~ 2) hierarchica l decision levels :~~~~~~~

then the leader would face a nociclassical control prob lem where the N-th

• partia L of u with respec t to x would appear.

We arrived at the conclusion that the leader is faced with the non-

cLass ical control problem (53). We will assume that the state— control con-

straint (53-c) can be solved for v over the whole domain of interest to give

v — S(x,p,u,t) (54)

where S is continuous and in C
1 w.r. to x arid p. This assumption ho lds in many

cases , as for example in the linear Quadratic case to be considered in the nex t

section. In any case, direct handling of the constraint (53—c) by appending

it , or asstmiption of its solvability in v , does not seem to be the core of

• the matter from a game point of view. Rowever the following remark is

pertinent here. Assume that we aLlow v E V ,

• - V — (v~v : R~~ [t Ø l t f ] R ~~, v(,c,t) piecewise continuous

(55~
in t and Lipschitzian in x, where c~ and t~

instead of V EV . The assumption of solvability of (33-c) will again give

_  -
~~~~~~~~~~~~~~
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I v(x ,t) • S(x ,p , u ,t). (56~ r
- I Since v(x ,t~ will be substituted in the rest of (33) with S(x.p,u,e) from

(56),the Leader will be faced with exactly the same problem as after

- 1. substituting v~t
) wi th S f rom ~~~~ The refore , no additionaL difficulty

[ arises if one allow s V instead of V and assumes solvability of (53-c~ .

In any case, for either V or V, even if t 5 3 - c )  i~ not solvable for V 1 thi leader ’s

I problem can be treated by using Theorem 1.2 , where th. control (u,v) should be

considered as unknown *nd (53-c) vil. ~lay the r~ le of a constraint , see ~39’ .

t Substituting v from (54~ to we obtain

fV
-L. . minimize J(u )  — & t . c(t ~ Y~ ~~~~~

‘ L.tx,p, u,t)dt
tu EU

LV subjec t to:

I x 

— 

F1(x
,p,u,t)

I.. - 
p F~ 1

(x ,p , u,t) + u F 1~~(x,p, u,t)

~h(x(t )‘)I - s —  - -V fI Z~ C
0

) — —

I where I., F1, F21, F~ , stand for the resulting composite functions .

Prob Lem (57) is a nonc lassical control problem like th. one trea ted in

IL Sect ion 1 where (x’,p ’) ’ is th. state of the system . Thus, Theorem

l.2 is applicab le and can be used for writing down the leade r ’s necessa ry

conditions. From the resul ts of the previous section , we conc Lude that the

II solution for the Lead.rs u —if it exists -La not unique. It  La interesting

to notice that (35) impLies that the ead .r has rioth L~~ t~ Lose if h* comnits

I himseLf to an affine in x , t ime varyLng stra tegy. Wi th such a coimni tment , the

Leader does not deterioz,at* hi s cost. Jo.~ riot aL ter he opt~ nal tr~,j.ctorv ,

- and also the follower ’s opt imal cost is riot affected. store noteworthy ~s that

F the affLrt. choice for the Leade r cart be made avert if ~~, L, M are nonl inear an d

— ,  ..__~~. -_
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u , u
L 
are constrained to take values in given closed sets. In acdition , ~

nay be constrained to take values in a given closed set In which case (53-c)

should be subs tituted by an appropriate inequality . n accordance LI

with the discussion in the previous section , we have that in general there

does not exist a strategy u(x,t) wh ich is optima l for every initial point

• n+l(x0,t0) i~n a subset of ~

It has been shown itt (4] through a counterexample that the principle

of optimality does riot hold for Stackelberg games . To make this statement more

precise Let us assume that the problem has been solved in (t ,t
f
] and ic* is the

optimal trajectory . While the process at (x*(! ),~~), where t
0

< t <_
f

~ WC stop

and solve the same Stacke lberg game on ( t l t
f i wi th initial condition x(E) 11x *

(E) .

Let ~~ be the optimal trajectory for the second problem. Then ~~ Ir does not

have to coincide with the restriction of x~ on ( E S t f ) . The explanation is

V the following. The leader is faced with the control problem (57) which has
ah (X(t

f
))

boundary condit~ans x ( t
0) x0 and P(tf) — , given at both t0 arid

Let (x*,p*) be the optimal trajectory of this problem . If the leader is asked

to solve the same control problem on (T,t~) with boundary coadLtions x(~ ) x*(~)

~h(x(t ) )
and P(tf) 

— 
‘ there is no necessity for p (E) ap*(E) Even more , if

• ~~~ ~2 
are the adjoirtt variables of the Leader ’s control problem on (t l t f and

are the adjoint variables of the leader ’s control prob lem on (E l t f ]

~g(x(ef
) )

corresponding to x arid p respectively, it will be \
1(tf) 

— ,

~s(x(tf
)) -ax

\
2(t0) — 0 , \1(tf) 

— , ‘~~(E) 0. If dynami c programming were ho dirtg

it should be \ , (~ ) — \
2

(t )  — 0, which is not true . Actually, \~ (E)  3 ,

isa necessary condition for dynamic programming to hold . The

______—-V — - - - - V . ,  
-V ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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condition \ 2 ( ~~~) 0, ~ can b~ used f~ r ex ample  i~ the inear ~uad r~ t i c

game , see ~~
Th_ C.,) for deriving more explicit conditions in terms oi the dat.~

of the probl em for dynamic programming to

Let ‘. — (X~~,X ,~, ) ’ derioce the adjoint variable for problem ~5 )  with

~ L’ ~~ corresponding to x and p respective ly. Then, condition (~~) results

in

• (M
~
(x ,u,S(x,p,u,t).t)+f(x,u,S(x,p, u,t),t)P]\’ — 0  (58~ N

V t E  (t0~ t
fJ

which will, generally make the leade r ’ s problem singular :~~~~~~~• This is to be

expected , because the leader exerts hi3 influence through the time functions

• resulting from u and u~, which are actually quite independent , and u is riot

penalized or subjec ted to any constraint in the initial formulation (~7)”

t.9). In other words , the Leader i~ more powerful than what a first inspec-

tion of the original problem indicates. One way to restrict the Leader ’s

strength or to avoid the singular problem could be the inclusion of u~
’ in L,

i.*., L S L(z ,u,~4,...,um ,t), which would mode l a se lf  discipLined Leader ,

or to impos. a priori bounds on for examp Le , ~~~ ~ k, 7 t~ (t0,t~ J

which could be interp reted as a constitutional restriction on a real Life

L Leader.
6Sae Appendi x 3.
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3. A Linear ~iadratic Stackel.berg Game

- In the present section we work out a Linear Quadratic Stackelberg

game . The Leader is penalized for u3’ as well , by including it in L. We

cons ider the dynamic system

- x • Ax + 31
u + B2v, x(t0) 

— ic,~ , t E [ tt
f

] (59)

- 
and the Cost functionals

t

J1(u,v) ~ (x~K1fxf+J~~~(x~Q1x+u
l R11u+v

1 R12v + Z u
L
Rju

L
)dt1 (60)

— ~[x~K2fxf
+~~~ (x ’Q2x

+u ’R21u+v
’R29v)dt (61)

where the matrices A, 
~~~~~~ 

~~~ are continuous functions of time and

Os,, R~~, R1, are symmetric. R22 is nonsingular 7 tE Lt 0I tfl) 
which guaran tees

~54). The follower’s necessary conditions are (recall (51)).

v — -R~~B~p (62)

— ~~ + B1
u - B

2
R~~B

’p ~63)

p - -Q
2
x - u R 21u - A

’p - u~B~p (64) F

x(t0) x0, P(tf
) K2f XE• (65)

Therefore, the leader ’s problem is (recall (53), (57))3

3We assume that Assumption (A) holds. See also Appendix A.

I
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• minimize J(u) — ~(x~K1fxf
+ ’ (x’Q1

x +u ’R11
u +

• 0 (bi:~)

+ p ’B2R~~
a12R,~B;p + t u

~~
Ri
u
~
)dt]

- subject to:

x — Ax - B2 R B p  + B1
u (67)

P — -Q,x - A ’p - u B ~p - u R 21
u (68)

x( t ) — x0
, P~ t

f
) K2f Xf. (69)

The necessary conditions for the leader in accordance with Theorem 1.2 are

(67), (68), (69) and

R11u + 8~X 1 - R~1u~~2 
- 0 (70)

[R 1u~ ~~~~~~~~~ R U rn
I + X2(R21

u+B~~)’ — 0 (71)

— -Q1x 
— A ’\1 + 

~?2 
( ?2 )

I V  .

— -B
2R.,~

R12 R2~ B~p 
+ 32R2232X 1 

+ AX 2 + B1
u \ ., (73)

L 
X
1
(t
f
) - K

1fxf~ ~2
(t0) 

- 0. (74 )

For simplification we assume further that

I. R~ — Y~,I, > 0, i — l,...,m 
, 

-

(75)

I. ~Ll 1’ R22 1

and (70), (71) are easily solved for u and u to yield

1’
V -
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X V)~~
2 

-L 
Ii\ 1 1

2

u — -[1+ R 1R~ 1~ ~B~X 1
+ R~,1BjPI

U — - .~-x 2
[p’B1

+u ’a;11 (77)

which can be substituted into (67), (68), (72), (73) to yield a nonlinear

system of differential equations, with unknown x, p, \~~, ~2 
and boundary

conditions (69) and (74). If y — +~o , then (76) and (77) yield u — 0 and

u — ~&~X1
, and thus the solution tends to the open loop soLution, i.e.,

u — u(t) v v (t), as the resulting form of (67), (b8), (72), (73) indicates

for V — +n~((2, ] ,  (31).

Befor e ending this section, we make the following comment. It

could be suggested to the followe r to penalize u~ in his cr iter ion wh ile u~’

is not penal ized in the Leade r ’s criterion. This would Lead to the appear-

ance of u~ in (68) (assumi ng u~’ exists). Thus in addition to (58) axx xx
isimilar condition due to u~~ appears which reinforces the strigular character

of the problem. If the leader now restricts himself to affine strategies in

x, then u~~ 
— 0 and the resulting optimum is as before. Actually, the

Leader can restrict himself to a quadratic strategy in x (without affec ting

his global optimum cost and trajectory) having thus three influences on the

• system, namely u, u , ui’ , f rom which onl y u is penalized in the leader ’s

criterion. Therefore, the leader will do better. For the followe r it is

not obvious if he will do better or not.

—~~~~~~~~ -—-~~~~ - -~~~
-
~~~~
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V 4 , Conc lus ions

In the presen t pa per , a nonclassical contro l problem was introduced

and analyzed . Problems of this type arise in the study of hierarchical systems ,

and take into acco unt several infor~~tion patterns that might be availab le to

the controllers. Two different approaches were presented . The first uses H

variational techniques , while the second reduces the nonc lassical prob lem to

a classical one . The nonexistence of closed Loop control laws for this problem
it !

was shown . The nonuniqueness of the solution of this problem was cons idered

and explained - The results obtained for this noriclassical control problem

• were used to study a Seackelberg differential game where the players have

current state information only (h (x(t),t)). Necessary conditions that the

optima l strategies must satis fy were derived . The inapplicability of dynamic

programming to Stackelberg dynamic games was explained . The singular character

of the leader ’s problem was proven and the nonuniqueness -of his strategies was

proven and characterized . In particular , it was shown that commitment of  the

leader to an affine t ime varying strategy does not tnduce any change to the

optimal costs arid trajectory . A linear Quadratic Stackelberg game was also

worked out as a specific application.

We end by outlining certain generalizations of the work presen ted

here. We consider first the discrete t ime versions . Consider the dynamic

system

— f(x,
~Pu’O’l

1(xk, k),k),...

uL (h~ (xk,k),k),... ,?(hm (X,~,k),k ) , k)

x,~ given , k — 1,... ,N— l.

— and the cos t

• 1
V _VV

~~~~~~~~~~ - - ,~. V ~~~~~~~~~~~~~~~~~~~~ 
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J(u ) g x N ) + 
~ 

L(x,Ku’(h 1
(xk ,k) , k) , . ...  Um

(hm
(x.~,k) , k) ,

~~~~~~~~~~~~~~~~~ u~ (hm (xk,k),k).

The proof of the corresponding Theorem 1.2 is straightforward . An immediate

consequence is that the restriction

I u t (h t (x.K ,k),k) — A~h
t (xk,k) + B~ , i - 1 ,,...

I where ~~~~~ are matrices , does not induce any loss of generality as far as

- 

the optima l cost and trajectory are concerned. (compare to (35)). Clearly

[ Proposition 1.1 carries over , too.

A discrete time version of the Stackelberg game of Section 2 can

be defined (see ), and analyzed similarly to section 2. Several information

I patterns can be exploited by employing different h t l s (see (8) ) .  The

restriction of the leader to affine strategies can also be imposed in the

I discrete case. The linear q dr~ ti~ discrete analog of problems (59)-(61)

can also be worked out in a similar way .

I The case where higher order partia l derivatives of u w.r. to x

I appear in (6) and (7) can be treated , and all the analysis of Sec tion 1
V 

carries over. On. should assume higher order different iability of the

1: functions involved. Lemma 1.1 can easily be extended to the case where

( higher order of part ials of ~ v .r. to y appear , making the proof of the

corresponding Theorem 1.1 possible. We can also res tr ict u~’ to a polynomial

form in terms of the h1 ’s. Th. analog of Theorem 1.2 can be easily stated

and proven and Proposition 1.1 also carries over.

- V V  -- 
-
~~~
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Finally, an N-level Stackelberg game where on each i-Leve l

(i — L ,...,N) n~, followers operate (ut,...,u~ ), play Nash (or Pareto) among

them, and ~~~ 
— u~(h~(x,t),t) j — 1 ,... , n~ , i — l ...,N, with given h~ and

1 fixed x
0
, t~~ tf can be easily treated by using the analysis for the

nonclassical control problem supplied here.
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Appendix A

Itt this Appendix we give certain conditions under which Assumption

(A) (Section 2) holds.

Lemma A.l: Let U
2 
be a subset of U (see (45) ) ,  def ined as

U — [uEUIu (x ,t) — C( t )x ÷ D(t), where the m1x n  matrix C(t)

and the m1~ I vector D(t) are piecewise continuous (A-l)

functions of t ime over (t~~tfJ . .

Then it holds :

inf J1(u,v) ~ ~~~~~~~ ~~~~~~~~~ z irt f J (u,v) — inf J (u,v)1 1 (A—2)

uEU , v E tu uEU , vETu uE IJ , vET ’u uEU ,, vET ’u.
2 -‘

Proof: The inequalities follow from the facts U
2~
2U , Tu CT ’u ~~uEU. The

last equality is obvious in the light of (35) and the proof of Theorem

1.2.

An ixm~~diate conclusion of Lettima A .l is that if

inf J~~(u~ v) — inf J
1

(u ,v)
1 - (A-3)

uEU 2, vEtu uEU, , vET ’u
A.

*

holds , then Assumption (A) holds (with U
N 

— U). For (A-3) to hold , it

suffices that the first order necessary conditions for the follower’s

problem are also sufficient, for each fixed uE U~. More specifically, for

fixed C(t), D(t) as in definition (A-I) , we consider the problem

1~
SI-

~~~~
— 

~~~~~~~~~~~~~~~~~~~~ ~
— —— ,,,~~~~—j’
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~VV

t f
• minimize h(x(t ))  + - M(x ,C(t)x+ D ( t ) ,v ,t)dt

0

(A-4)
subject to: vEV

x — f(x,C(t)x+D(t),v,t), x(t ) — x , tE [t i t
f

]

and seek conditions under which the first order necessary conditions for an - -

optima l v~ for problem (A—4) (see (Sl-b)-(5l-d)) are also sufficient. Such

conditions can be found in Chapter 5-2 of [15]. We formalize this discussion

in the following Proposition.

Proposition A.l: If for each UEU
2
, the first order necessary conditions

(51-b)-(5l-d) for problem (A-4) are also sufficient , then Assumption (A)

holds.

The discussion in the present Appendix generalizes clearly to the

case where each u~’ depends on h i (x ,t) instead of x and to the case where

dif feren t U
2

1 s are considered ; see for example Proposition 1.1(u ).

As an example where Proposition A .1 can be applied , we cons ider

the linear quadratic game of Section 3. Then, Theorem 5, p. 341 and

Corollary p. 343 of [15J in conjunction with Proposition A.!. yield that if

� 0, K2f ~ 0 then Assumption (A) holds.

- 1
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Appendix B

In this Appendix we investigate under what conditions the Principle

of Optimality holds for the Stackelbe rg games of Sections 2 and 3.

I We consider first the linear quadratic game of Section 3. As it

was shown in Section 2, \~~( t )  — 0’? t .E [t
0~tf

], is a necessary condition for

[ the principle of optimaLity to hold. With a 0, ~73) y ields

1. -B
~~~~~~ 2 R4B~P -lV- B9R.~~

B X
1 

- 0

from which , by assuming rank B~ 
— we obtain equivalently

1 R1I R29 B,P + B~X 1 
- 0.

A lso , (71) yields 
-

— 0, i — I,... ,m. (B-I)

SI
We conclude that under the assumption rank B~, 

— m1, (67)-t~74) simplify to

give

- [ x - ~~~~~ + 81
u + B,v tB-2’~

1~ 
~l 

— -Q1x - A’\1 ~B3)

1-. R11u B~X 1 
- 0, R12v + B~X 1 

- 0 ~B-4)

x( t ) — x ,  ~1 (tf) 
— K1f Xf (B—5)

p — -Q2x 
- A ’p (B~6)

1 —1v -R ,2B p  
- ~B-7)

_ _ _ _ _  - 
_

_
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P(tf
) = K2f Xf . (B-8)

(B-2)-(B-5 ) show that the leader ’s probl em can be cons idered as a team

* *problem under the “constraint” (B-I), with optimal solution , say (u ,v ) and
*

(B-6)-(B-8) show that the same v must be the follower’s optimal reaction to

*
the leader ’s choice u . Actually, (B-i) is not at all a constraint , since

with 
~2 

a 0 , (68), (whe re u~ appears) is not really considered by the leader.

So, the Leader operating under (67) and wanting to minimize (60) may as well

choose u~ — 0, since he is penal ized for  ~
L
, while u

t 
does not appear in

(67) .

The same analysis and conclusions carry over to the more general

game of Section 2 (see (45)-(49) and (54)), since the condition 0 on

(t~~tfJ conies from the demand that the transversality conditions hold

‘? tE [t0~tf] and is not affected by the fact that in (48) u
1 
is not penalized.

Notica that if the leader ’s cost functional (48) is substituted by 
-

t
f

J1 (u,v) g(x(t )) + fL(x,u,v,t) ÷ u
L
~R.u~~dt

i~l (B-9)

( > 0, i l,...,m1

then (B- I. ) holds again.

The idea behind the cond ition 0 on [t , t~~] is that th~ leader

is not really constrained by the follower ’s adjoint equation and therefore

the leader ’s problem , be ing independent of the fol l ower ’s problem, becomes a

team control problem.

In conc lusion , a necessary condition for the Principle of Optirnality

to hold for the StackeLberg games of Sections 2 and 3, is tha t the leader ’s

problem is actually a team control problem. But for a control problem with

• *~~~~~~~~: 
- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1.
fixed initial conditions , ~he Principle of Optimality does hold. We thus

have the “if and only if” statement : The Principle of Optimali ty holds for

the problems of Sections 2 and 3 (see ¼45)-(49), (54) and (59)-(6L) - 
-

respectively) if and only if the leader’s proble m is a team con t roL probl em

for both the leader and follower.
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